Respuesta :

If its acceleration is constant, then it is equal to the jet's average velocity, given by

[tex]a=a_{\rm ave}=\dfrac{\Delta v}{\Delta t}[/tex]

Then it takes

[tex]17.7\dfrac{\rm m}{\mathrm s^2}=\dfrac{233\frac{\rm m}{\rm s}-119\frac{\rm m}{\rm s}}{\Delta t}\implies\Delta t=\boxed{6.44\,\mathrm s}[/tex]

Answer:

The time taken by the jet is 6.44 seconds.

Step-by-step explanation:

It is given that,

Acceleration of the jet, [tex]a=17.7\ m/s^2[/tex]

Initial velocity of the jet, u = 119 m/s

Final velocity of the jet, v = 233 m/s

Acceleration of an object is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]t=\dfrac{v-u}{a}[/tex]

[tex]t=\dfrac{233-119}{17.7}[/tex]

t = 6.44 seconds

So, the time taken by the jet is 6.44 seconds. Hence, this is the required solution.