An open diving chamber rests on the ocean floor at a water depth of 60 meter. Find the air pressure (gage pressure relative to the local atmospheric pressure) in kPa inside of the diving chamber required to keep water from entering the chamber. (Assume SG=1.03)

Respuesta :

Answer:

Gauge Pressure required = 606.258 kPa

Explanation:

Water will not enter the chamber if the pressure of air in it equals that of the water which tries to enter it.

Thus at a depth of 60m we have pressure of water equals

[tex]P(z)=P_{0}+\rho _wgh[/tex]

Now the gauge pressure is given by

[tex]P(z)-P_{0}=\rho _wgh[/tex]

Applying values we get

[tex]P(z)-P_{0}=\rho _wgh\\\\P_{gauge}=1.03\times 1000\times 9.81\times 60Pa\\\\P_{gauge}=606258Pascals\\\\P_{gauge}=606.258kPa[/tex]