Answer : The specific heat capacity of the alloy [tex]1.422J/g^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]C_1[/tex] = specific heat of alloy = ?
[tex]C_2[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]
[tex]m_1[/tex] = mass of alloy = 21.6 g
[tex]m_2[/tex] = mass of water = 50.0 g
[tex]T_f[/tex] = final temperature of system = [tex]31.10^oC[/tex]
[tex]T_1[/tex] = initial temperature of alloy = [tex]93.00^oC[/tex]
[tex]T_2[/tex] = initial temperature of water = [tex]22.00^oC[/tex]
Now put all the given values in the above formula, we get
[tex]21.6g\times c_1\times (31.10-93.00)^oC=-50.0g\times 4.18J/g^oC\times (31.10-22.00)^oC[/tex]
[tex]c_1=1.422J/g^oC[/tex]
Therefore, the specific heat capacity of the alloy [tex]1.422J/g^oC[/tex]