What is the following quotient

Answer:
√(3)/2
Step-by-step explanation:
To find the quotient, rationalize the denominator by multiplying both the numerator and denominator by √(6)
3√(8)*√(6) = 3√(48)
4√(6)*√(6) 24
Next, simplify the top radical
12√(3) = √(3)/2, This is the answer, it cannot be simplified any further.
24
For this case we must find the quotient of the following expression:
[tex]\frac {3 \sqrt {8}} {4 \sqrt {6}} =[/tex]
We combine [tex]\sqrt {6}[/tex] and [tex]\sqrt {8}[/tex] into a single radical:
[tex]\frac {3 \sqrt {\frac {8} {6}}} {4} =\\\frac {3 \sqrt {\frac {4} {3}}} {4} =\\\frac {3 \frac {\sqrt {4}} {\sqrt {3}}} {4} =\\\frac {3 \frac {2} {\sqrt {3}} * \frac {\sqrt {3}} {\sqrt {3}}} {4} =[/tex]
[tex]\frac {3 * \frac {2 \sqrt {3}} {3}} {4} =\\\frac {\frac {6 \sqrt {3}} {3}} {4} =\\\frac {6 \sqrt {3}} {12} =\\\frac {\sqrt {3}} {2}[/tex]
Answer:
[tex]\frac {\sqrt {3}} {2}[/tex]