9. Nick has desigied a diamond-shaped kite as shown below. The measures of so me sides of the kite, are marked in the
figure. Find the value of x (JUSTIFY)

9 Nick has desigied a diamondshaped kite as shown below The measures of so me sides of the kite are marked in the figure Find the value of x JUSTIFY class=

Respuesta :

Answer:

[tex]x=\frac{10\sqrt{6}}{7}\ in[/tex]

Step-by-step explanation:

step 1

In the right triangle DOC

Find the measure of side DO

Applying the Pythagoras Theorem

[tex]DC^{2}=DO^{2}+OC^{2}[/tex]

substitute the given values

[tex]7^{2}=DO^{2}+5^{2}[/tex]

[tex]DO^{2}=7^{2}-5^{2}[/tex]

[tex]DO^{2}=49-25[/tex]

[tex]DO^{2}=24[/tex]

[tex]DO=2\sqrt{6}\ in[/tex]

step 2

In the right triangle DOC

Find the sine of angle ∠ODC

sin(∠ODC)=OC/DC

substitute

[tex]sin(ODC)=5/7[/tex] -----> equation A

step 3

In the right triangle DOP

Find the sine of angle ∠ODP

sin(∠ODP)=OP/DO

substitute

[tex]sin(ODP)=x/2\sqrt{6}[/tex] -----> equation B

step 4

Find the value of x

In this problem

∠ODC=∠ODP

so

equate equation A and equation B

[tex]5/7=x/2\sqrt{6}[/tex]

[tex]x=\frac{10\sqrt{6}}{7}\ in[/tex]