For the reaction below, Kp 5 1.16 at 800.8C. CaCO3(s) 34 CaO(s) 1 CO2(g) If a 20.0-g sample of CaCO3 is put into a 10.0-L container and heated to 800.8C, what percentage by mass of the CaCO3 will react to reach equilibrium?

Respuesta :

Answer:

The mass percentage of calcium carbonated reacted is 2.5%.

Explanation:

The reaction is:

[tex]CaCO_{3}(s)--->CaO(s)+CO_{2}(g)[/tex]

Thus the Kp of the equilibrium will be:

Kp = partial pressure of carbon dioxide [as the other are solid]

Moles of calcium carbonate initially present = [tex]\frac{mass}{molarmass}=\frac{20}{100}=0.2[/tex]

Let us apply ICE table to the equilibrium given:

                        [tex]CaCO_{3}(s)--->CaO(s)+CO_{2}(g)[/tex]

Initial                       0.2                       0          0

Change                 -x                            +x        +x

Equilibrium           0.2-x                         x          x

Kp = partial pressure of carbon dioxide

Kp = Kc(RT)ⁿ

where n = difference in the number of moles of gaseous products and reactants

for given reaction n = 1

R = gas constant = 8.314 J /mol K

T = temperature = 800 ⁰C = 1073 K

Putting values

Kc =[tex]\frac{Kp}{RT}=\frac{1.16}{8.314X1073}=1.3X10^{-4}[/tex]

Kc = [tex]\frac{[CO_{2}][CaO]}{[CaCO_{3}]}= \frac{x^{2} }{(0.2-x)}=1.3X10^{-4}[/tex]

[tex]1.3X10^{-4}(0.2-x)=x^{2}[/tex]

[tex]x^{2} = 0.26X10^{-4}-1.3X10^{-4}x[/tex]

On calculating

x =  0.005

where x = the moles of calcium carbonate dissociated or reacted.

Percentage of the moles or mass reacted = [tex]\frac{molesreacted X100}{initialmoles}=\frac{0.005X100}{0.2}=2.5[/tex]%

Kp is the equilibrium constant of the reaction in accordance with the partial pressure of the gas. The mass percentage of calcium carbonate is 2.5%.

What is the mass percentage?

The mass percentage is the ratio of the moles reacted to that of the moles present initially multiplied by  100.

The reaction of calcium carbonate can be shown as,

[tex]\rm CaCO_{3} \rightarrow CaO+CO_{2}[/tex]

The formula for the equilibrium constant is given as,

[tex]\rm Kp = Kc(RT)^{n}[/tex]

Here,

n = 1

Gas constant (R) = 8.314 J /mol K

Temperature (T) = 1073 K

Kp = 1.16

Substituting values in the above equation:

[tex]\begin{aligned}\rm Kc &= \rm \dfrac{Kp}{RT}\\\\&= \dfrac{1.16}{8.314\times 1073}\\\\&= 1.3 \times 10^{-4}\end{aligned}[/tex]

From the ICE table of the reaction the value of moles of calcium carbonate (x) is calculated as:

[tex]\rm Kc = \dfrac{[CO_{2}][CaO]}{[CaCO_{2}]}= \dfrac{x^{2}}{(0.2-x)}= 1.3\times 10^{-4}[/tex]

Solving further,

[tex]\begin{aligned} \rm 1.3\times 10^{-4}(0.2-x) &= \rm x^{2}\\\\\rm x^{2} &= \rm 0.26\times 10^{-4} - 1.3 \times 10^{-4}x\\\\\rm x &= 0.005\end{aligned}[/tex]

The mass percentage of the calcium carbonate is given by:

[tex]\begin{aligned}\rm mass\;\% &= \dfrac{\text{moles reacted}}{\text{initial moles}}\times 100\%\\\\&= \dfrac{0.005}{0.2}\times 100\%\\\\&= 2.5\%\end{aligned}[/tex]

Therefore, 2.5% is the mass percentage.

Learn more about mass percentage here:

https://brainly.com/question/13973333