Assume a population of purple and white flower pea plants (2000 total plants) is in Hardy-Weinberg equilibrium. The frequency of white flower plants is 0.16. On the basis of this information, determine the following:

a. The frequency (decimal form) of heterozygous purple plants. Round to 2 significant digits.

b. The frequency (decimal form) of the dominant allele (1 significant digit).

c. The number of homozygous purple flower plants.

I tried to take 2pg = 2(0.84)(0.16) for part A and got 0.268 (approximately 0.27) for the heterozygous purple flower but that was incorrect.4

Respuesta :

Answer:

a) [tex]0.48[/tex]

b)

[tex]p= 0.4\\q=0.6[/tex]

c) [tex]720[/tex]

Explanation:

Given ,

Frequency of white flower plant ([tex]p^2[/tex]) is [tex]0.16[/tex]

Thus, frequency of dominant white allele ([tex]p[/tex]) is equal to [tex]\sqrt{0.16} \\= 0.4[/tex]

As we that, as per  Hardy-Weinberg equilibrium equation

[tex]p+q=1[/tex]

Substituting the value of [tex]p[/tex] in above equation, we get

[tex]0.4+q=1\\q=1-0.4\\q=0.6[/tex]

a) As per Hardy-Weinberg equilibrium equation

[tex]p^2+q^2+2pq=1\\[/tex]

Substituting the given and calculated values in above equation, we get -

[tex]0.4^2+0.6^2+2pq=1\\0.16+0.36+2pq=1\\2pq=1-0.16-0.36\\2pq=0.48[/tex]

b) The frequency (decimal form) of the dominant allele

[tex]p= 0.4\\q=0.6[/tex]

c) number of homozygous purple flower plants

[tex]=[/tex] frequency of purple flower plants ([tex]q^2[/tex]) [tex]*[/tex] Number of flowers

[tex]= q^2 * 2000\\= (0.6^2)*2000\\= 0.36 * 2000\\= 720[/tex]