Given a diameter with endpoints P(-12,-8) and Q(0,0),find the center coordinate circumstance and area of the circle described

Respuesta :

Answer:

Center:(-6,-4)

Circumference:45.31

Area:163.4

Step-by-step explanation:

The given circle has diameter with endpoints P(-12,-8) and Q(0,0).

The center is the midpoint of P(-12,-8) and Q(0,0).

We use the midpoint rule to find the center.

[tex]( \frac{x_2+x_1}{2}, \frac{y_2+y_1}{2} )[/tex]

[tex]( \frac{ - 12 + 0}{2} , \frac{ - 8 + 0}{2} ) = ( - 6, - 4)[/tex]

Use the distance formula to find radius using the center (-6,-4) and the point on the circle (0,0) or (-12,-8).

[tex]d = \sqrt{(x_2-x_1)^2 +(y_2-y_1)^2} [/tex]

[tex]r = \sqrt{( { - 6 - 0)}^{2} + ( { - 4 - 0)}^{2} } [/tex]

[tex]r = \sqrt{36 + 16} = \sqrt{52} [/tex]

The circumference is

[tex]C=2\pi \: r[/tex]

[tex]C=2 \: \pi \: \times \sqrt{52} [/tex]

[tex]C=45.31 \: units[/tex]

The area is given by:

[tex]A=\pi {r}^{2} [/tex]

[tex]A=\pi \times {( \sqrt{52} )}^{2} [/tex]

[tex]A=163.4 \: \: {units}^{2} [/tex]