Answer:
(a) [tex]p(x= 0)=9.536\times 10^{-7}[/tex] (b) p(x> 1)=0.999
Explanation:
Probability that sharpshooter hit the target [tex]p=0.75=\frac{3}{4}[/tex]
We know that [tex]p+q=1[/tex]
So [tex]q=1-p=1-\frac{3}{4}=\frac{1}{4}[/tex]
(a) The probability that she misses all the shots
Using binomial theorem [tex]^{n}C_{r}p^rq^{n-r}[/tex]
[tex]=^{10}C_{0}p^0\frac{1}{4}^{10}[/tex]
[tex]=9.536\times 10^{-7}[/tex]
(B) Probability that at least one shot hit the target
[tex]p(x> 1)=1-p(x=0)[/tex]
[tex]p(x> 1)=1-^{10}C_{0}p^0\frac{1}{4}^{10}[/tex]
[tex]p(x> 1)=0.999[/tex]