Respuesta :
Answer:
[tex]m_{1} =5\\\\m_{2} =-2[/tex]
Step-by-step explanation:
using quadratic formula:
[tex]m = \frac{-b+-\sqrt{b^{2}-4*a*c}}{2*a}[/tex]
in this case:
a = 1 b= -3 c= -10
we have:
[tex]m =\frac{-(-3)+-\sqrt{(-3)^{2}-4*1*-10}}{2*1}\\\\m =\frac{3+-\sqrt{9+40}}{2}\\\\m = \frac{3+-\sqrt{9+40}}{2}\\ \\m =\frac{3+-\sqrt{49}}{2}\\\\m_{1} = \frac{3+7}{2} =5\\\\m_{2} = \frac{3-7}{2} = -2[/tex]
Answer:
m = - 2, m = 5
Step-by-step explanation:
Given
m² - 3m - 10 = 0
Consider the factors of the constant term (- 10) which sum to give the coefficient of the m- term (- 3)
The factors are - 5 and + 2, since
- 5 × 2 = - 10 and - 5 + 2 = - 3, hence
(m - 5)(m + 2) = 0
Equate each factor to zero and solve for m
m + 2 = 0 ⇒ m = - 2
m - 5 = 0 ⇒ m = 5