Answer:
[tex]v'_{x} = 785.786 m/s[/tex]
[tex]v'_{y} = 1414.214 m/s[/tex](decreasing)
Given:
[tex]u_{x}[/tex] = 2300 m/s
[tex]u'_{x}[/tex] = 100 m/s
[tex]v_{x}[/tex] = 2000 m/s
Angle made with the horizontal, [tex]\theta = 45^{\circ}[/tex]
The horizontal component of velocity is on the X-axis whereas the vertical one is on the Y-axis
Now, by the law of conservation of momentum for horizontal axis:
[tex]mu_{x} + m'u'_{x} = mv_{x} + m'v'_{x}[/tex]
[tex]2300 + (- 100) = 2000cos45^{\circ} + v'_{x}[/tex]
(The mass of the particles is same)
[tex]v'_{x} = 2200 - 1414.214 = 785.786 m/s[/tex]
Now, by the law of conservation of momentum for vertical axis:
[tex]mu_{y} + m'u'_{y} = mv_{y} + m'v'_{y}[/tex]
(The mass of the particles is same)
[tex]u_{y} + u'_{y} = v_{y} + v'_{y}[/tex]
[tex]0 = v_{y} + v'_{y}[/tex]
(since, initially, there's no vertical component of velocity)
[tex]v'_{y} = - 2000sin45^{\circ} = 1414.214 m/s[/tex](decreasing)
velocity, v = [tex]\sqrt{v^{2}_{x} + v^{2}_{y}}[/tex]
v = [tex]\sqrt{(785.786)^{2} + (1414.214)^{2}} = 1617.856 m/s[/tex]