Respuesta :
Answer:
[tex](x-6)^{2} + (y+4)^{2}=36[/tex]
Step-by-step explanation:
[tex](x-h)^{2} + (y-k)^{2}=r^{2}[/tex]
h=6
k=-4
r=6
[tex](x-6)^{2} + (y+4)^{2}=6^{2}[/tex]
[tex]x^{2} -12x+36 + y^{2} +8y+16=36\\\\x^{2} +y^{2} -12x +8y +52-36 = 0\\\\x^{2} +y^{2} -12x +8y+ 16 = 0[/tex]
Answer:
(x - 6)² + (y + 4)² = 36
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
here (h, k) = (6, - 4) and r = 6, hence
(x - 6)² + (y - (- 4))² = 6², that is
(x - 6)² + (y + 4)² = 36 ← equation of circle