Respuesta :
1)
[tex]-44 > -2x - 8 \geq -8 | \cdot(-1)\\44 < 2x + 8 \leq 8 | : 2\\22 < x + 4 \leq 4\\18 < x \leq 0 => x \in \emptyset[/tex]
2)
[tex]-2x -8 > -44|\cdot(-1) \ \ -2x - 8 \geq -8|\cdot(-1)\\2x + 8 < 44 \ \ 2x + 8 \leq 8\\x < 18 \ \ x \leq 0 => x \in (-\infty, 0][/tex]
3)
[tex]-2x > -44 \ -8x \geq -8\\x < 22 \ \ x \leq 1 => (-\infty, 1][/tex]
4)
[tex]-2x - 8 < -44|\cdot(-1/2) \ \ -2x - 8 \leq -8|\cdot(-1/2)\\x + 4 > 22 \ \ x + 4 \geq 4\\x > 18 \ \ x \geq 0 => x \in (18, \infty)[/tex]
5)
[tex]-2x - 8 < -44|\cdot(-1/2) \ \ -2x - 8 \geq - 8|\cdot(-1/2)\\x + 4 > 22 \ \ x + 4 \leq 4\\x > 18 \ \ x \leq 0, => x \in \emptyset[/tex]
Answer:
The correct answer would be the last answer or d!
Step-by-step explanation:
If -2x-8 is less than -44 than -44 is greater than -2x-8. If -2x-8 is greater than or equal to -8 than it is still greater than or equal to -2x-8!