Respuesta :
Answer :
(a) The sketch of BCC unit cell is shown below.
(b) The atomic radius of this metal is, [tex]1.221\times 10^{-8}cm[/tex]
(c) The side length of the BCC unit cell is, [tex]2.82\times 10^{-8}cm[/tex]
Solution : Given,
Number of atom in unit cell of BCC (Z) = 2
Atomic mass (M) = 48.9 g/mole
Density = [tex]7.24g/cm^3[/tex]
Avogadro's number [tex](N_{A})=6.022\times 10^{23} mol^{-1}[/tex]
First we have to calculate the edge length of unit cell.
Formula used : Â
[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex] Â Â Â .............(1)
where,
[tex]\rho[/tex] = density  = [tex]7.24g/cm^3[/tex]
Z = number of atom in unit cell  = 2
M = atomic mass  = 48.9 g/mole
[tex](N_{A})[/tex] = Avogadro's number  = [tex]6.022\times 10^{23} mol^{-1}[/tex]
a = edge length of unit cell  or the side length of the BCC unit cell =?
Now put all the values in above formula (1), we get:
[tex]7.24g/cm^3=\frac{2\times (48.9g/mol)}{(6.022\times 10^{23}mol^{-1}) \times (a)^3}[/tex]
[tex]a=2.82\times 10^{-8}cm[/tex]
The edge length of unit cell is, [tex]2.82\times 10^{-8}cm[/tex]
Now we have to determine the atomic radius of this metal.
Formula used :
[tex]a=\frac{4r}{\sqrt{3}}[/tex]
where,
a = edge length of unit cell
r = nearest neighbor distance  or atomic radius of metal
Now put all the given values in this formula, we get :
[tex]2.82\times 10^{-8}cm=\frac{4\times r}{\sqrt{3}}[/tex]
[tex]r=1.221\times 10^{-8}cm[/tex]
The atomic radius of this metal is, [tex]1.221\times 10^{-8}cm[/tex]

The atomic radius of this hypothetical metal with a BCC crystal structure is equal to [tex]1.22 \times 10^{-8}\;cm[/tex]
Given the following data:
Density of metal = 7.24 g/cm³
Atomic weight of metal = 48.9 gmol.
Scientific data:
Avogadro's number = [tex]6.02 \times 10^{23}[/tex]
Number of atom in a unit cell of BCC (Z) = 2.
How to determine the atomic radius of this metal.
First of all, we would have to calculate the edge length (a) of this unit cell by using this formula:
[tex]\rho = \frac{ZM}{a^3A_N}[/tex]
Where:
- [tex]\rho[/tex] is the density.
- M is the atomic mass.
- Z is the number of atom in a unit cell.
- [tex]A_N[/tex] is Avogadro number.
- a is the edge length.
Making a the subject of formula, we have:
[tex]a=\sqrt[3]{\frac{ZM}{\rho A_N} }[/tex]
Substituting the given parameters into the formula, we have;
[tex]a=\sqrt[3]{\frac{2 \times 48.9}{7.24 \times 6.02 \times 10^{23}} }\\\\a= 2.82 \times 10^{-8}\;cm[/tex]
For the atomic radius, we have:
[tex]a=\frac{4r}{\sqrt{3} } \\\\r=\frac{a\sqrt{3}}{4} \\\\r=\frac{2.82 \times 10^{-8} \times \sqrt{3}}{4}\\\\r=1.22 \times 10^{-8}\;cm[/tex]
Read more on atomic radius here: https://brainly.com/question/14831455