The fire department needs information on friction losses occurring between a water main and an open fire hydrant. At maximum main pressure (85 psig), the water discharge rate is 1620 gpm through a 2.5-inch open fire hydrant. The water main, in which the velocity is very small, is situated 8 ft below the hydrant discharge point. Determine the friction loss from the main to the discharge point. Assume atmospheric pressure is 15 psia.

Respuesta :

Explanation:

The given data is as follows.

      [tex]P_{1}[/tex] = 85 psig,   [tex]P_{2}[/tex] = [tex]P_{atm}[/tex] = 15 psia

        Q = 1620 gpm,  d = 2.5 inch,     l = 8 ft = 2.4384 m

According to Darey-Weisbach equation,

                        [tex]h_{l} = \frac{4fl \nu^{2}}{2gD}[/tex]  ......... (1)

Value of 'f' will be decided on the basis of Reynold number.

As, it is known that [tex]R_{l} = \frac{\rho \nu d}{\mu}[/tex]

where,  [tex]\mu_{water}[/tex] = [tex]10^{-3}[/tex] kg/ms

As it is known that 1 gpm = [tex]\frac{1}{3.67} m^{3}/hr[/tex]

So,  [tex]1 m^{3}/hr[/tex] = 3.67 gpm

Therefore,   Q = [tex]1620 \times \frac{1}{3.67}[/tex]

                        = [tex]441.4168 m^{3}/hr[/tex]

                         = 0.1226 [tex]m^{3}/s[/tex]

In, 1 inch = 2.54 cm = 0.0254 m

Therefore, d = 2.5 \times 0.0254 = 0.0635 m

                V = [tex]\frac{Q}{\frac{\pi}{4}d^{2}}[/tex]

                    = [tex]\frac{0.1226}{0.785 \times (0.0635)^{2}}[/tex]

                    = 38.73 m/s

Hence, we will calculate Reynold number as follows.

             [tex]R_{l}[/tex] = [tex]\frac{1000 \times 38.73 \times 0.0635}{10^{-3}}[/tex]

                             = 2459355

As [tex]R_{l}[/tex] > 2000 then, it means that flow is turbulent.

As, f = 0.079 [tex]R^{-0.25}_{l}[/tex]

        = 0.001994

Putting all the values into equation (1) formula as follows.    

                          [tex]h_{l} = \frac{4fl \nu^{2}}{2gD}[/tex]

                                     = [tex]\frac{4 \times 0.001994 \times 2.4384 \times (38.73)^{2}}{2 \times 9.81 \times 0.0635}[/tex]

                                      = [tex]1.04069 \times 10^{5} m[/tex]

Thus, we can conclude that friction loss from the main to the discharge point is [tex]1.04069 \times 10^{5} m[/tex].