contestada

An electron and a 0.0280-kg bullet each have a velocity of magnitude 450 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity?

Respuesta :

Answer:

[tex]8.1466mm\ and\ 2.646\times 10^{-31}m[/tex]

Explanation:

Mass of bullet = 0.028 kg

Velocity v = 450 m/sec

Accuracy in velocity = 0.01 %

So [tex]\Delta v_x=0.01\times \frac{450}{100}=0.045m/sec[/tex]

From the uncertainty principle [tex]\Delta x\geq \frac{h}{2\Delta p_x}[/tex]

[tex]\Delta x\geq \frac{h}{2m\Delta v_x }[/tex]

For electron [tex]m=9.1\times 10^{-31}kg[/tex]

[tex]\Delta x=\frac{6.67\times 10^{-34}}{2\times 9.1\times 10^{-31}\times 0.045}=8.144\times 10^{-3}m=8.144mm[/tex]

For bullet mass m =0.028 kg

[tex]\Delta x=\frac{6.67\times 10^{-34}}{2\times 0.028\times 0.045}=2.646\times 10^{-31}m[/tex]