Air at 37.8 °C and 101.3 kPa absolute pressure flows at a velocity of 23 m/s past a sphere having a diameter of 42 mm. What are the drag coefficient and the force on the sphere?

Respuesta :

Explanation:

The given data is as follows.

  T = [tex]37.8^{o}C[/tex],   [tex]\rho = 1.137 kg/m^{3}[/tex],  r = [tex]1.9 \times 10^{-5}[/tex] kg/ms

  Diameter (D) = 42 mm = [tex]42 \times 10^{-3} m[/tex] = 0.042 m

  Velocity, [tex](\upsilon_{o})[/tex] = 23 m/s

Formula for Reynold number is as follows.

             [tex]N_{Rl} = \frac{\rho \times \upsilon_{o} \times D}{r}[/tex]

Putting the given values into the above equation as follows.

            [tex]N_{Rl} = \frac{\rho \times \upsilon_{o} \times D}{r}[/tex]

                               = [tex]\frac{1.137 kg/m^{3} \times 23 m/s \times 0.042 m}{1.9 \times 10^{-5}}[/tex]

                               = [tex]5.781 \times 10^{4}[/tex]  

As it is known that drag coefficient for sphere is [tex]C_{D}[/tex] equals 0.47.

Hence, formula for total drag force is as follows.

             [tex]F_{D} = A_{p} \times d \times C_{D} \times \frac{\rho \times \upsilon^{2}_{o}}{2}[/tex] ......... (1)

                  [tex]A_{p}[/tex] = [tex]\frac{\pi}{4} \times D^{2}[/tex]  ....... (2)

Putting equation (2) in equation (1) as follows.

          [tex]F_{D} = A_{p} \times d \times C_{D} \times \frac{\rho \times \upsilon^{2}_{o}}{2}[/tex]    

or,          [tex]F_{D} = \frac{\pi}{4} \times D^{2} \times d \times C_{D} \times \frac{\rho \times \upsilon^{2}_{o}}{2}[/tex]

                               = [tex]0.47 \times (\frac{(23)^{2}}{2}) \times \pi \times 1.137 \times \frac{(0.042)^{2}}{4}[/tex]                

                               = 0.1958 N

Thus, we can conclude that the force on the sphere is 0.1958 N.