Respuesta :

Answer:

[tex]r=2x\ units[/tex]

Step-by-step explanation:

we know that

The volume of the cylinder is equal to

[tex]V=\pi r^{2} h[/tex]

we have

[tex]V=4\pi x^{3}\ units^{3}[/tex]

[tex]h=x\ units[/tex]

substitute and solve for r

[tex]4\pi x^{3}=\pi r^{2} (x)[/tex]

Simplify

[tex]4x^{2}=r^{2}[/tex]

square root both sides

[tex]2x=r[/tex]

Rewrite

[tex]r=2x\ units[/tex]

Answer: [tex]r=2x\ units[/tex]

Step-by-step explanation:

We know that the volume of a cylinder is:

[tex]V=\pi r^2h[/tex]

Where r is the radius and h is the height of the cylinder.

In this case we know that the height is [tex]h = x\ units[/tex] and the volume is [tex]V=4\pi x^3[/tex]

Then we substitute these values in the first equation and solve for r

[tex]4\pi x^3=\pi r^2 x[/tex]

[tex]4x^3=r^2 x[/tex]

[tex]r^2=4\frac{x^3}{x}[/tex]

[tex]r^2=4x^2[/tex]

[tex]r=2x[/tex]