Respuesta :
Answer:
[tex]r=2x\ units[/tex]
Step-by-step explanation:
we know that
The volume of the cylinder is equal to
[tex]V=\pi r^{2} h[/tex]
we have
[tex]V=4\pi x^{3}\ units^{3}[/tex]
[tex]h=x\ units[/tex]
substitute and solve for r
[tex]4\pi x^{3}=\pi r^{2} (x)[/tex]
Simplify
[tex]4x^{2}=r^{2}[/tex]
square root both sides
[tex]2x=r[/tex]
Rewrite
[tex]r=2x\ units[/tex]
Answer: [tex]r=2x\ units[/tex]
Step-by-step explanation:
We know that the volume of a cylinder is:
[tex]V=\pi r^2h[/tex]
Where r is the radius and h is the height of the cylinder.
In this case we know that the height is [tex]h = x\ units[/tex] and the volume is [tex]V=4\pi x^3[/tex]
Then we substitute these values in the first equation and solve for r
[tex]4\pi x^3=\pi r^2 x[/tex]
[tex]4x^3=r^2 x[/tex]
[tex]r^2=4\frac{x^3}{x}[/tex]
[tex]r^2=4x^2[/tex]
[tex]r=2x[/tex]