Suppose a1=12−12,a2=23−13,a3=34−14,a4=45−15,a5=56−16. a) Find an explicit formula for an: . b) Determine whether the sequence is convergent or divergent: . (Enter "convergent" or "divergent" as appropriate.)

Respuesta :

I'm going to assume you meant to write fractions (because if [tex]a_n[/tex] are all non-negative integers, the series would clearly diverge), so that

[tex]a_1=\dfrac12-\dfrac12[/tex]

[tex]a_2=\dfrac23-\dfrac13[/tex]

[tex]a_3=\dfrac34-\dfrac14[/tex]

and so on.

a. If the pattern continues as above, we would have the general term

[tex]a_n=\dfrac n{n+1}-\dfrac1{n+1}=\dfrac{n-1}{n+1}[/tex]

b. Note that we can write [tex]a_n[/tex] as

[tex]a_n=\dfrac{n-1}{n+1}=\dfrac{n+1-2}{n+1}=1-\dfrac2{n+1}[/tex]

The series diverges by comparison to the divergent series

[tex]\displaystyle\sum_{n=1}^\infty\frac1n[/tex]

The pattern follows a sequence other than arithmetic and geometric sequence.

  • The explicit formula is: [tex]\mathbf{a_n = \frac n{n+1} - \frac 1{n+1}}[/tex]
  • The sequence is a divergent sequence

(a) The explicit formula

The given parameters are:

[tex]\mathbf{a_1 = \frac 12 - \frac 12}[/tex]

[tex]\mathbf{a_2 = \frac 23 - \frac 13}[/tex]

[tex]\mathbf{a_3 = \frac 34 - \frac 14}[/tex]

Express 4 as 3 + 1

[tex]\mathbf{a_3 = \frac 3{3+1} - \frac 1{3+1}}[/tex]

Substitute n for 3

[tex]\mathbf{a_n = \frac n{n+1} - \frac 1{n+1}}[/tex]

Hence, the explicit formula is:

[tex]\mathbf{a_n = \frac n{n+1} - \frac 1{n+1}}[/tex]

(b) The sequence type

In (a), we have:

[tex]\mathbf{a_n = \frac n{n+1} - \frac 1{n+1}}[/tex]

Take LCM

[tex]\mathbf{a_n = \frac {n -1}{n+1} }[/tex]

Express -1 as 1 - 2

[tex]\mathbf{a_n = \frac {n +1 - 2}{n+1} }[/tex]

Split

[tex]\mathbf{a_n = \frac {n +1}{n+1} - \frac{2}{n+1} }[/tex]

[tex]\mathbf{a_n =1 - \frac{2}{n+1} }[/tex]

[tex]\mathbf{- \frac{2}{n+1} }[/tex] implies that, the sequence diverges.

Hence, the sequence is a divergent sequence

Read more about sequence and series at:

https://brainly.com/question/12429779