⇒If , fog(x)=I(Identity),
gof(x)=I(Identity),
then then f(x) and g(x) are inverses of each other.
[tex]f(x)=\frac{1}{x-4}\\\\g(x)=\frac{4x+1}{x}\\\\fog(x)=f[g(x)]=f[\frac{4x+1}{x}]\\\\=\frac{1}{\frac{4x+1}{x}-4}\\\\=\frac{x}{4x+1-4x}\\\\=x\\\\gof(x)=g[f(x)]\\\\g[\frac{1}{x-4}]\\\\g[f(x)]=\frac{\frac{4 \times1}{x-4}+1}{\frac{1}{x-4}}\\\\g[f(x)]=\frac{4+x-4}{1}\\\\g[f(x)]=x[/tex]
fog(x)=x and gof(x)=x
fog=I and gof=I
It means f(x) and g(x) are inverses of each other.
⇒Domain of f(x)=R-{4}, R=Real Number
as⇒ x-4≠0
⇒x≠4
⇒Domain of g(x)=R-{0},R=Set of Real number
As, x≠0.
⇒Domain of the Composition
fog(x)=gof(x)=x
=Set of all Real Number(R)