An ancient club is found that contains 200 g of pure carbon and has an activity of 7.5 decays per second. Determine its age assuming that in living trees the ratio of ( 14 C 12 C ) ( 14 C 12 C ) atoms is about 1.10 × 10 − 12 1.10 × 10 − 12 . Note that the half life of carbon-14 is 5700 years and the Avogadro number is 6.02 × 10 23 6.02 × 10 23 .

Respuesta :

Answer : The age will be, 14205.59 year

Explanation :

First we have to determine the [tex]^{14}C[/tex] decay constant (k).

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]k=\frac{0.693}{5700yr}[/tex]

[tex]k=1.216\times 10^{-4}yr^{-1}[/tex]

Now we have to determine the number of [tex]^{12}C[/tex] nuclei.

Number of [tex]^{12}C[/tex] nuclei = [tex]\frac{\text{Mass of }^{12}C}{\text{Molar mass of }^{12}C}\times 6.02\times 10^{23}mole^{-1}[/tex]

Number of [tex]^{12}C[/tex] nuclei = [tex]\frac{200g}{12g/mole}\times 6.02\times 10^{23}mole^{-1}=1.003\times 10^{25}[/tex]

Now we have to determine the number of [tex]^{14}C[/tex] nuclei.

Ratio of [tex]^{14}C[/tex] to [tex]^{12}C[/tex] = [tex]1.10\times 10^{-12}[/tex]

[tex]\frac{\text{Number of }^{14}C\text{ nuclei}}{\text{Number of }^{12}C\text{ nuclei}}=1.10\times 10^{-12}[/tex]

[tex]\frac{\text{Number of }^{14}C\text{ nuclei}}{1.003\times 10^{25}}=1.10\times 10^{-12}[/tex]

[tex]\text{Number of }^{14}C\text{ nuclei}=1.1003\times 10^{13}[/tex]

Now we have to determine the initial activity.

[tex]\text{Initial activity}A_o=k\times \text{Number of }^{14}C\text{ nuclei}[/tex]

[tex]\text{Initial activity}A_o=(1.216\times 10^{-4})\times (1.1003\times 10^{13})=1.338\times 10^9\text{ decay per year}=42.1948\text{ decay per second}[/tex]

conversion used : [tex]1year=3.171\times 10^{7}second[/tex]

Now we have to determine the current activity.

[tex]\text{Current activity}A=7.5\text{ decay per second}[/tex]

Now we have to determine its age.

[tex]A=A_o\times e^{(-kt)}[/tex]

[tex]7.5=(42.1948)\times e^{[(-1.216\times 10^{-4})t]}[/tex]

[tex]t=14205.59year[/tex]

Therefore, the age will be, 14205.59 year