Respuesta :

Answer:

[tex]y(t)=\frac{3}{5}e^t-\frac{3}{5}cost 3t-\frac{1}{5} sin3t[/tex]

Step-by-step explanation:

We are given that

y'-y=2 sin3t,y(0)=0

We have to solve given differential  equation using Laplace transform

We know that L(y'-y)=L(2sin3t)

[tex]sY(s)-y(0)-Y(s)= \frac{6}{s^2+9}[/tex]

[tex]L(sinat)=\frac{a}{s^2+a^2}[/tex]

[tex]Y(s)(s-1)=\frac{6}{s^2+9}[/tex]

[tex]Y(s)=\frac{6}{(s^2+9)(s-1)}[/tex]

Using partial fraction

[tex]\frac{6}{(s^2+9)(s-1)}=\frac{A}{s-1}+\frac{Bs+c}{s^2+9}[/tex]

[tex]6=A(s^2+9)+(s-1)(Bs+C)[/tex]

s-1=0 then s=1

substitute s= 1 in equation

6=A(1+9)

[tex]A=\frac{6}{10}=\frac{3}{5}[/tex]

Comparing coefficient of [tex]s^2[/tex] and s on both sides then we get

[tex]A+B=0[/tex]

[tex]B=-A=-\frac{3}{5}[/tex]

[tex]-B+C=0[/tex]

[tex]B=C=-\frac{3}{5}[/tex]

Substitute the values

Then, Y(s)=[tex]\frac{3}{5}\frac{1}{s-1}+\frac{\frac{-3}{5} s-\frac{3}{5}}{s^2+9}[/tex]

Apply inverse transform then we get

[tex]y(t)=\frac{3}{5}e^t-\frac{3}{5}cost 3t-\frac{1}{5} sin3t[/tex]

[tex]L(cos at}=\frac{s}{s^+a^2}[/tex] and [tex]L(e^{at})=\frac{1}{s-a}[/tex]