How much energy is produced in the creation of 5 grams of "O by the process: (10 pts.) 14N + α. 'H + 170 ("N-14.00307 gmole, α-4.0026 gmol, 'H 1.00783 g/mole, 170-| 6.999 13 g/mol)

Respuesta :

Answer : The energy produced is [tex]3.410\times 10^{10}J[/tex]

Explanation :

First we have to calculate the moles of [tex]^{17}O[/tex].

[tex]\text{Moles of }^{17}O=\frac{\text{Mass of }^{17}O}{\text{Molar mass of }^{17}O}=\frac{5g}{16.99913g/mole}=0.294133moles[/tex]

Now we have to calculate the mass defect.

The balanced reaction is,

[tex]^{14}N+\alpha \rightarrow ^1H+^{17}O[/tex]

Mass defect = Sum of mass of product - sum of mass of reactants

[tex]\Delta m=[(n_{^1H}\times M_{^1H})+(n_{^{17}O}\times M_{^{17}O})]-[(n_{^{14}N}\times M_{^{14}N})+(n_{\alpha}\times M_{\alpha})][/tex]

where,

n = number of moles = 0.294133 moles

M = molar mass

Now put all the given values in the above, we get:

[tex]\Delta m=[(n_{^1H}\times M_{^1H})+(n_{^{17}O}\times M_{^{17}O})]-[(n_{^{14}N}\times M_{^{14}N})+(n_{\alpha}\times M_{\alpha})][/tex]

[tex]\Delta m=[(0.294133mole\times 1.00783g/mole)+(0.294133mole\times 16.99913g/mole)]-[(0.294133mole\times 14.00307g/mole)+(0.294133mole\times 4.0026g/mole)][/tex]

[tex]\Delta m=0.00037943157g=3.7943157\times 10^{-7}kg[/tex]

Now we have to calculate the energy produced.

[tex]Energy=\Delta m\times (c)^2[/tex]

[tex]Energy=(3.7943157\times 10^{-7}kg)\times (299792458m/s)^2[/tex]

[tex]Energy=3.410\times 10^{10}J[/tex]

Therefore, the energy produced is [tex]3.410\times 10^{10}J[/tex]