Find the equation(s) of all vertical and horizontal asymptotes for the function f left parenthesis x right parenthesis equals fraction numerator left parenthesis 4 x plus 1 right parenthesis left parenthesis 5 x minus 1 right parenthesis over denominator x squared minus 9 end fraction .

Respuesta :

Answer:

The vertical asymptotes are x=3 and x=-3. The horizontal asymptote is y=20.

Step-by-step explanation:

The given function is

[tex]f\left(x\right)=\frac{\left(4x+1\right)\left(5x-1\right)}{x^2-9}[/tex]

Equate the denominator equal to 0, to find the vertical asymptotes.

[tex]x^2-9=0[/tex]

Add 9 on both sides.

[tex]x^2=9[/tex]

Taking square root on both sides.

[tex]x=\pm \sqrt{9}[/tex]

[tex]x=\pm 3[/tex]

Therefore the vertical asymptotes are x=3 and x=-3.

The given function can be written as

[tex]f\left(x\right)=\frac{20 x^2 + x - 1}{x^2-9}[/tex]

Degree of numerator and denominator are same.If degree of numerator and denominator are same, then horizontal asymptote is

[tex]y=\frac{\text{Leading coefficient of numerator}}{\text{Leading coefficient of denominator}}[/tex]

[tex]y=\frac{20}{1}[/tex]

[tex]y=20[/tex]

Therefore the horizontal asymptote is y=20.