Respuesta :

Answer:

(5(x-1))/3x

Step-by-step explanation:

Answer:

[tex]\frac{5(x-1)}{3x}[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{5x^{2} -5}{3x^{2}+3x}[/tex]

To simplify this rational expression, we need to extract the greatest common factor of each part,

[tex]\frac{5x^{2} -5}{3x^{2}+3x}=\frac{5(x^{2}-1) }{3x(x+1)}[/tex]

Then, we observe that the numerator has a difference of two perfect squares, which can be factored as

[tex]a^{2} -b^{2} =(a-b)(a+b)[/tex]

Where, [tex]a=x[/tex] and [tex]b=1[/tex]

[tex]x^{2} -1=(x-1)(x+1)[/tex]

Now, we applied this to the rational expression

[tex]\frac{5x^{2} -5}{3x^{2}+3x}=\frac{5(x^{2}-1) }{3x(x+1)}=\frac{5(x-1)(x+1)}{3x(x+1)}=\frac{5(x-1)}{3x}[/tex]

Therefore the simplified form of the given expression is

[tex]\frac{5(x-1)}{3x}[/tex]