Answer:
Option A - [tex]a_0= 2,a_1= 3,a_2= 5,a_3= 9[/tex]
Step-by-step explanation:
Given : For the sequence [tex]a_n= 2^n + 1[/tex]
To find : Identify the values of following?
Solution :
The nth term of the sequence is [tex]a_n= 2^n + 1[/tex]
Substitute n=0,1,2 and 3
When n=0,
[tex]a_0= 2^0+ 1[/tex]
[tex]a_0= 1+1[/tex]
[tex]a_0=2[/tex]
When n=1,
[tex]a_1= 2^1+ 1[/tex]
[tex]a_1= 2+1[/tex]
[tex]a_1=3[/tex]
When n=2,
[tex]a_2= 2^2+ 1[/tex]
[tex]a_2=4+1[/tex]
[tex]a_2=5[/tex]
When n=3,
[tex]a_3= 2^3+ 1[/tex]
[tex]a_3= 8+ 1[/tex]
[tex]a_3= 9[/tex]
Therefore, The value is [tex]a_0= 2,a_1= 3,a_2= 5,a_3= 9[/tex]
So, Option A is correct.