contestada

An ancient club is found that contains 100 g of pure carbon and has an activity of 6.5 decays per second. Determine its age assuming that in living trees the ratio of (14C/12C) atoms is about 1.30×10^-12. Note that the half life of carbon-14 is 5700 years and the Avogadro number is 6.02×10^23.

Respuesta :

Answer:

The age of living tree is 11104 years.

Explanation:

Given that,

Mass of pure carbon = 100 g

Activity of this carbon is = 6.5 decays per second = 6.5 x60 decays/min =390 decays/m

We need to calculate the decay rate

[tex]R=\dfrac{-dN}{dt}=\lambda N=\dfrac{0.693}{t_{\frac{1}{2}}}N[/tex]....(I)

Where, N = number of radio active atoms

[tex]t_{\frac{1}{2}}[/tex]=half life

We need to calculate the number of radio active atoms

For [tex]N_{12_{c}}[/tex]

[tex]N_{12_{c}}=\dfrac{N_{A}}{M}[/tex]

Where, [tex]N_{A}[/tex] =Avogadro number

[tex]N_{12_{c}}=\dfrac{6.02\times10^{23}}{12}[/tex]

[tex]N_{12_{c}}=5.02\times10^{22}\ nuclie/g[/tex]

For [tex]N_{c_{14}}[/tex]

[tex]N_{c_{14}}=1.30\times10^{-12}N_{12_{c}}[/tex]

[tex]N_{c_{14}}=1.30\times10^{-12}\times5.02\times10^{22}[/tex]

[tex]N_{c_{14}}=6.526\times10^{10}\ nuclei/g[/tex]

Put the value in the equation (I)

[tex]R=\dfrac{0.693\times6.526\times10^{10}\times60}{5700\times3.16\times10^{7}}[/tex]

[tex]R=15.0650\ decay/min g[/tex]

100 g carbon will decay with rate

[tex]R=100\times15.0650=1507\ decay/min[/tex]

We need to calculate the total half lives

[tex](\dfrac{1}{2})^{n}=\dfrac{390}{1507}[/tex]

[tex]2^n=\dfrac{1507}{390}[/tex]

[tex]2^n=3.86[/tex]

[tex]n ln 2=ln 3.86[/tex]

[tex]n=\dfrac{ln 3.86}{ln 2}[/tex]

[tex]n =1.948[/tex]

We need to calculate the age of living tree

Using formula of age

[tex]t=n\times t_{\frac{1}{2}}[/tex]

[tex]t=1.948\times5700[/tex]

[tex]t=11103.6 =11104\ years[/tex]

Hence, The age of living tree is 11104 years.