Respuesta :
Explanation:
As it is given that air is compressed steadily from 150 kPa and 300 K to 600 KPa with a mass flow rate of 5 kg/s.
  [tex]P_{1}[/tex] = 150 kPa,       [tex]P_{1}[/tex] = 600 kPa
  [tex]T_{1}[/tex] = 300 K,        [tex]T_{2}[/tex] = ?
Mass flow rate (m) = 5 kg/s.
        [tex]PV^{1.5}[/tex] = constant
Q = 50.35 kJ/kg, Â Â Â Â Â n = 1.5
(a) Â Calculate the exit temperature of air as follows.
       [tex]TP^{\frac{1 - n}{n}}[/tex] = constant
       [tex]T_{1}P^{\frac{1 - n}{n}}_{1}[/tex] = [tex]T_{2}P^{\frac{1 - n}{n}}_{2}[/tex]
      [tex]T_{2}[/tex] = [tex]T_{1} (\frac{P_{1}}{P_{2}})^{\frac{1 - 1.5}{1.5}}[/tex]
                = [tex]300 (\frac{150}{600})^{\frac{- 0.5}{1.5}}[/tex]     Â
                = 476.22 K
(b) Â An energy balance equation for the compressor and determine its power input in kW as follows.
       Q - w = m (\Delta H + K.E + P.E)
As K.E and P.E will be negligible here. So, Q and w will be in kW.
Also, Â Â [tex]\Delta H = \Delta U + \Delta (PV)[/tex]
       [tex]\Delta H[/tex] = [tex]\Delta U + V \Delta P + P \Delta V[/tex]
As, Q - w = [tex]m \Delta H[/tex]
and [tex]\Delta H = H_{2} - H_{1}[/tex]
So, air enthalpy at 150 kPa and 300 K, Â [tex]h_{1}[/tex] = ?
Air enthalpy = 1.007 \times T(q) - 0.026
       [tex]h_{1}[/tex] = [tex]1.007 \times (300 - 273) - 0.026[/tex]
                 = 27.163 kJ/kg
Also, Â [tex]h_{2}[/tex] = [tex]1.007 \times (476.22 - 273) - 0.026[/tex]
              = 204.62 kJ/kg
     Q = mQ
       = [tex]50 \times 50.35[/tex]
       = 251.75 kJ/s
     Q - w = [tex]m \times (204.62 - 27.163)[/tex]
          - w = 887.285 - 251.75
              = -635.535 kJ/s
or, Â Â Â Â Â Â Â Â Â Â Â Â = 635.535 kW
Whereas negative sign indicates that work is done on the system.