he equilibrium constant, Kc , for the following reaction is 7.00×10-5 at 673 K.NH4I(s) NH3(g) + HI(g)If an equilibrium mixture of the three compounds in a 4.90 L container at 673 K contains 1.45 mol of NH4I(s) and 0.405 mol of NH3, the number of moles of HI present is moles.

Respuesta :

Answer: The number of moles of HI in the solution is [tex]1.24\times 10{-3}[/tex] moles.

Explanation:

We are given:

[tex]K_c=7.00\times 10^{-5}\\n_{NH_3}=0.405mol\\n_{NH_4I}=1.45mol\\V=4.90L[/tex]

To calculate the concentration of a substance, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]     ......(1)

  • Concentration of ammonia:

[tex][NH_3]=\frac{0.405mol}{4.90L}=0.083mol/L[/tex]

  • Concentration of ammonium iodide:

[tex][NH_4I]=\frac{1.45mol}{4.90L}=0.30mol/L[/tex]

For the given chemical reaction:

[tex]NH_4I(s)\rightleftharpoons NH_3(g)+HI(g)[/tex]

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[HI][NH_3]}{[NH_4I]}[/tex]

Putting values in above equation, we get:

[tex]7.0\times 10^{-5}=\frac{[HI]\times 0.083}{0.30}[/tex]

[tex][HI]=2.53\times 10^{-4}[/tex]

Calculating the moles of hydrogen iodide by using equation 1, we get:

[tex]2.53\times 10^{-5}=\frac{\text{Moles of HI}}{4.9}\\\\\text{Moles of HI}=1.24\times 10^{-3}[/tex]

Hence, the number of moles of HI in the solution is [tex]1.24\times 10{-3}[/tex] moles.