Respuesta :
Answer: [tex](0.5,8.5)[/tex]
Step-by-step explanation:
We need to use the following formula to find the Midpoint "M":
[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Given the points (-5,13) and (6,4) can identify that:
[tex]x_1=-5\\x_2=6\\\\y_1=13\\y_2=4[/tex]
The final step is to substitute values into the formula.
Therefore, the midpoint of the segment between the points (-5,13) and (6,4) is:
[tex]M=(\frac{-5+6}{2},\frac{13+4}{2})\\\\M=(\frac{1}{2},\frac{17}{2})\\\\M=(0.5,8.5)[/tex]
Answer:
[tex](\frac{1}{2},\frac{17}{2})[/tex]
Step-by-step explanation:
Midpoint formula is
[tex]( \frac{x + x_1}{2},\frac{y + y_1}{2})[/tex]
The given points are,
(-5,13) and (6,4)
[tex]( \frac{-5 + 6}{2},\frac{13+4}{2})[/tex]
[tex]( \frac{1}{2},\frac{17}{2})[/tex]
Hence the midpoint of the segment between (-5,13) and (6,4) is
[tex]( \frac{1}{2},\frac{17}{2})[/tex]