Answer:
The difference in atomic mass between the two isotopes is 1.002780942 atomic mass unit.
Explanation:
For an isotope-I (heavier) Â
Mass of an isotope-I=M
Number of neutrons = n+1
Number of protons = p
[tex]\Delta m_1=((n+1)\times m_n)+(p\times m_p))-M[/tex]
For an isotope-II
Mass of an isotope-II=M'
Number of neutrons = n
Number of protons = p
[tex]\Delta m_2=((n)\times m_n)+(p\times m_p))-M'[/tex]
Difference in binding energy:
[tex]B.E=\Delta mc^2[/tex] (general binding energy expression)
Binding energy difference between two isotopes: Â
[tex]\Delta B.E=B.E-B.E'=5.4810 MeV=(\Delta m_1-\Delta m_2)c^2[/tex]..(1)
[tex]5.4810 MeV=(\Delta m_1-\Delta m_2)c^2[/tex]
[tex]=([((n+1)\times m_n)+(p\times m_p))-M]-[((n)\times m_n)+(p\times m_p))-M'])c^2
[/tex]
B.E-B.E'=5.4810 MeV
[tex]=([((n+1)\times m_n)+(p\times m_p))-M]-[((n)\times m_n)+(p\times m_p))-M'])c^2[/tex]
[tex]5.4810 MeV=[1\times m_n-M+M']c^2[/tex]
[tex]\frac{5.4810}{931.50} u=m_n-M+M'[/tex]
[tex]M-M'=1.008665 u -\frac{5.4810}{931.50} u=1.002780942 u[/tex]