3. The following sets are not equal - An (BUC) and AU(BnC) Construct a universe U and non-empty sets A, B, and C so that the above sets are in fact the same. . Construct a universe U and non-empty sets A, B, and C so that the above sets are in fact different.

Respuesta :

Answer:

1.U={1,2,3,4,5}

A={2}

B={2,3}

C={4,5}

2.U={1,2,3,4}

A={1,2}

B={2,3}

C={4}

Step-by-step explanation:

We are given that [tex]A\cap (B\cup C)[/tex] and [tex]A\cup (B\cap C)[/tex]

are different sets

1.We have to construct a universe set U and non empty sets A,B and C so that above set in fact the same

Suppose U={1,2,3,4,5}

A={2}

B={2,3}

C={4,5}

[tex]B\cap C=\phi[/tex]

[tex]B\cup C=[/tex]{2,3,4,5}

[tex]A\cap (B\cup C)[/tex]={2}[tex]\cap[/tex]{2,3,4,5}={2}

[tex]A\cup (B\cap C)[/tex]={2}[tex]\cup\phi [/tex]={2}

Hence, [tex]A\cap (B\cup C)=A\cup (B\cap C)[/tex]

2.We have to construct a universe set U and non empty sets A,B and C so that  above sets are in fact different

Suppose U={1,2,3,4}

A={1,2}

B={2,3}

C={4}

[tex] B\cap C=\phi[/tex]

[tex]B\cup C[/tex]={2,3,4}

[tex]A\cup (B\cap C)[/tex]={1,2}[tex]\cup \phi [/tex]={1,2}

[tex]A\cap (B\cup C)[/tex]={1,2}[tex]\cap[/tex] {2,3,4}={2}

Hence, [tex]A\cap (B\cup C)\neq A\cup (B\cap C)[/tex]