Use the Ratio Test to determine whether the series is convergent or divergent. [infinity] 8 · 16 · 24 · · (8n) n! n = 1 Identify an. 8n! n! (8n)! n! 8 · 16 · 24 · · (8n) n! 8 · 16 · 24 · · (8n) n (8n)! n Evaluate the following limit. lim n → [infinity] an + 1 an

Respuesta :

It looks like we the series is

[tex]\displaystyle\sum_{n=1}^\infty\frac{8\cdot16\cdot24\cdot\cdots\cdot(8n)}{n!}[/tex]

In the numerator, we can factor out [tex]n[/tex] copies of 8:

[tex]\displaystyle\sum_{n=1}^\infty\frac{8^n(1\cdot2\cdot3\cdot\cdots\cdot n}{n!}=\sum_{n=1}^\infty\frac{8^nn!}{n!}=\sum_{n=1}^\infty8^n[/tex]

Then [tex]a_n=8^n[/tex] and by the ratio test,

[tex]\displaystyle\lim_{n\to\infty}\left|\dfrac{8^{n+1}}{8^n}\right|=\lim_{n\to\infty}8=8>1[/tex]

so the series diverges.

Answer:

(b) 8

Step-by-step explanation:

took test!