Respuesta :
Looks like
[tex]F(y)=\begin{cases}0&\text{for }y<0\\1-e^{-y^2}&\text{for }y\ge0\end{cases}[/tex]
a. [tex]F(y)[/tex] is a valid distribution function if
- [tex]F(y)\to0[/tex] as [tex]y\to-\infty[/tex];
- [tex]F(y)\to1[/tex] as [tex]y\to+\infty[/tex];
- [tex]F(y)[/tex] is non-decreasing; and
- [tex]F(y)[/tex] is "right-continuous", meaning that the limit of any "piece" of [tex]F(y)[/tex] as [tex]y\to c[/tex] from the right exists.
The first two conditions are met: we have
[tex]\displaystyle\lim_{y\to-\infty}F(y)=0[/tex]
[tex]\displaystyle\lim_{y\to+\infty}F(y)=\lim_{y\to+\infty}(1-e^{-y^2})=1[/tex]
The second condition is also met:
[tex]F'(y)=\begin{cases}0&\text{for }y<0\\2ye^{-y^2}&\text{for }y>0\end{cases}[/tex]
both of which are non-negative over their respective domains.
Finally, the fourth condition is met because [tex]F(y)[/tex] is continuous everywhere.
b. We already found [tex]f(y)[/tex] above when checking for the monotonicity of [tex]F(y)[/tex]; the probability density [tex]f(y)[/tex] is simply the derivative of the distribution function [tex]F(y)[/tex].
[tex]f(y)=F'(y)=\begin{cases}0&\text{for }y<0\\2ye^{-y^2}&\text{for }y\ge0\end{cases}[/tex]
(Notice that we include [tex]y=0[/tex] so that the [tex]P(Y=0)[/tex] exists.)
c. By definition of the distribution function, we have
[tex]P(Y\ge200)=1-P(Y<200)=1-F(200)=e^{-40,000}[/tex]
which is value very close to 0.