Respuesta :

Answer: [tex]^nC_r=\dfrac{n(n-1)}{2}[/tex]

[tex]^nP_{n-2}=n(n-1)[/tex]

Step-by-step explanation:

Since we have given that

C(n,n-2)

As we know that

[tex]^nC_r=\dfrac{n!}{(n-r)!r!)}\\\\so,\\\\^nC_{n-2}=\dfrac{n!}{(n-)n-2)!2!}\\\\^nC_{n-2}=\dfrac{n!}{2!(n-2)!}\\\\^nC_{n-2}=\dfrac{n(n-1)(n-2)!}{2!(n-2)!}\\\\^nC_{n-2}=\dfrac{n(n-1)}{2}[/tex]

Similarly,

[tex]^nP_{n-2}=\dfrac{n!}{(n-2)!}\\\\^nP_{n-2}=\dfrac{n(n-1)(n-2)!}{(n-2)!}\\\\^nP_{n-2}=n(n-1)[/tex]

Hence, [tex]^nC_r=\dfrac{n(n-1)}{2}[/tex]

[tex]^nP_{n-2}=n(n-1)[/tex]