A particle of mass 2.4×10^−6 kg and charge 27 μC is moving at a speed of 27 m/s perpendicularly to a uniform 9.5-T magnetic field. What is the radius of the particle’s circular path?

Respuesta :

Answer:

0.253 m

Explanation:

Given that, the mass of the particle, [tex]m=2.4\times10^{-6} kg[/tex].

Charge of the particle, [tex]q=27\times10^{-6}  kg[/tex].

Speed of the particle, [tex]v=27 m/s[/tex].

Magnetic field is, [tex]B=9.5 T[/tex].

The radius of the particle's circular path when the speed of the particle is perpendicular to the magnetic field is,

[tex]r=\frac{mv}{qB}[/tex].

By putting all the values in the above equation.

[tex]r=\frac{(2.4\times10^{-6}kg)(27m/s) }{(27\times10^{-6}C)(9.5T) }[/tex].

Therefore by further solving,

[tex]r=0.253m[/tex]

Therefore the radius of the particle in a circular path is 0.253 m