For this case we have the following functions:
[tex]r (x) = 3x-1\\s (x) = 2x + 1[/tex]
We must find (\ frac {r} {s}) (x)
By definition we have to:
[tex](\frac {r} {s}) (x) = \frac {r (x)} {s (x)}[/tex]
So:
[tex](\frac {r} {s}) (x) = \frac {3x-1} {2x + 1}[/tex]
We evaluate the function at[tex]x = 6[/tex]:
[tex](\frac {r} {s}) (6) = \frac {3 (6) -1} {2 (6) +1} = \frac {18-1} {12 + 1} = \frac {17 } {13}[/tex]
Answer:
[tex](\frac {r} {s}) (x) = \frac {17} {13}[/tex]