contestada

Four hundred kg/h of Steam from a low pressure turbine at 12.5 atm. and 250 C goes into a feed water heater which preheats the water entering the economizer in a boiler. The steam is comes out of the feed water at 200 C. The water at a flow rate of 500 kg/h enters the feed water heater at 20C. Calculate the feed water exit temperature.

Respuesta :

Explanation:

According to the heat relationship,

    Heat given by steam = heat taken by water

Hence,    [tex](mC_{p} \Delta T)_{steam}[/tex] = [tex](mC_{p} \Delta T)_{water}[/tex]

where, [tex]C_{p}[/tex] = specific heat

Value of [tex]C_{p}_{steam}[/tex] at 250^{o}C and 12.5 atm is 2.326 [tex]kJ/Kg^{o}C[/tex].

And, [tex]C_{p}_{steam}[/tex] at 200^{o}C and 12.5 atm is 2.743 [tex]kJ/Kg^{o}C[/tex].

Therefore, average [tex]C_{p}_{steam}[/tex] = [tex]\frac{2.326 kJ/Kg^{o}C + 2.743 kJ/Kg^{o}C}{2}[/tex]

                                          = 2.5345 kJ/Kg^{o}C

As the given data is as follows.

      [tex]m_{steam}[/tex] = 400 kg/hr, [tex]\Delta T_{steam}[/tex] = [tex]250^{o}C - 200^{o}C[/tex] = [tex]50^{o}C[/tex], [tex]m_{water}[/tex] = 500 kg/hr

            [tex]C_{p}_{water}[/tex] = 4.186 [tex]kJ/kg^{o}C[/tex]

Hence, putting the given values into the above formula as follows.

           [tex](mC_{p} \Delta T)_{steam}[/tex] = [tex](mC_{p} \Delta T)_{water}[/tex]

  [tex](400 \times 2.5345 kJ/kg^{o}C \times 50^{o}C)_{steam}[/tex] = [tex](500 kg \times 4.186 kJ/kg^{o}C \Delta T)_{water}[/tex]

                [tex]\Delta T_{water} = 24.2^{o}C[/tex]

As we know that, [tex]\Delta T_{water} = T_{2} - T_{1}[/tex]

                             [tex]T_{2} - 20^{o}C = 24.2^{o}C[/tex]

                            [tex]T_{2} = 44.2^{o}C[/tex]

Thus, we can conclude that the new temperature of water is [tex]44.2^{o}C[/tex].