Respuesta :

Answer: The energy released in the given nuclear reaction is 3.526 MeV.

Explanation:

For the given nuclear reaction:

[tex]_{19}^{42}\textrm{K}\rightarrow _{20}^{42}\textrm{Ca}+_{-1}^{0}\textrm{e}[/tex]

We are given:

Mass of [tex]_{19}^{42}\textrm{K}[/tex] = 41.962403 u

Mass of [tex]_{20}^{42}\textrm{Ca}[/tex] = 41.958618 u

To calculate the mass defect, we use the equation:

[tex]\Delta m=\text{Mass of reactants}-\text{Mass of products}[/tex]

Putting values in above equation, we get:

[tex]\Delta m=(41.962403-41.958618)=0.003785u[/tex]

To calculate the energy released, we use the equation:

[tex]E=\Delta mc^2\\E=(0.003785u)\times c^2[/tex]

[tex]E=(0.003785u)\times (931.5MeV)[/tex] (Conversion factor: [tex]1u=931.5MeV/c^2[/tex] )

[tex]E=3.526MeV[/tex]

Hence, the energy released in the given nuclear reaction is 3.526 MeV.