A four stroke gasoline engine has a compression ratio of 10:1 with 4 cylinders of total displacement 2.3 L. the inlet state is 280 K, 70 kPa and the engine is running at 2100 RPM with the fuel adding 1400 kJ/kg in the combustion process. What is the network in the cycle and how much power is produced?

Respuesta :

Answer:

Net work, W = 842.52 kJ/kg

Power, P = 32.82 kW

Given:

compression ratio, r = 10:1

Total volume displaced, [tex]V_{d} = 2.3 l = 2.3\times 10^{- 3} m^{3}[/tex]

[tex]T_{inlet}[/tex] = 280 K

[tex]P_{inlet}[/tex] = 70 kPa

Speed, N = 2100 rpm = 35 rps

Heat energy added, Q = 1400 kJ/kg

Solution:

Now, calculation of the overall efficiency:

[tex]\eta = 1- r^(1 - k)[/tex]

where

k = 1.4

[tex]\eta = 1- 10^(0.4) = 0.6018[/tex]

Also,

Net work done, W = [tex]\eta Q = 0.6018\times 1400 = 842.52 kJ/kg[/tex]

Now, specific volume is given by:

[tex]P_{inlet}\vartheta = RT_{inlet}[/tex]

[tex]70\times 10^{3}\vartheta = 0.287\times 280[/tex]

[tex]\vartheta = 1.148 m^{3}/kg[/tex]

Now, mean effective pressure, P' can be calculated as:

[tex]W = P'(\vartheta - \vartheta')[/tex]

[tex]\frac{W}{(\vartheta - \vartheta')} = P'[/tex]

[tex]\frac{842.52}{\vartheta(1 - \frac{\vartheta'}{\vartheta})} = P'[/tex]

(Since, r = [tex]\frac{\vartheta}{\vartheta'}[/tex])

[tex]\frac{842.52}{\vartheta(1 - \frac{1}{r})} = P' = \frac{842.52}{1.148(1 - \frac{1}{10})}[/tex]

P' = 815.45 kPa

Now, for power produced, P:

P = [tex]\frac{1}{2}P'V_{d} N[/tex]

P = [tex]\frac{1}{2}\times 815.45\times 2.3\time 10^{- 3}\times 35[/tex]

P = 32.82 kW