Respuesta :

Answer:

distributive property

Step-by-step explanation:

distributive property is the property that allows us to perform the product of a number with several others that are summing or subtracting

2×13+2×15 = 2(13+15)

Answer:

7/15

Step-by-step explanation:

Step by Step Solution

More Icon

STEP

1

:

           2

Simplify   —

           5

Equation at the end of step

1

:

 13    2

 —— -  —

 15    5

STEP

2

:

           13

Simplify   ——

           15

Equation at the end of step

2

:

 13    2

 —— -  —

 15    5

STEP

3

:

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       15

     The right denominator is :       5

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

3 1 0 1

5 1 1 1

Product of all

Prime Factors  15 5 15

     Least Common Multiple:

     15

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 3

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      13

  ——————————————————  =   ——

        L.C.M             15

  R. Mult. • R. Num.      2 • 3

  ——————————————————  =   —————

        L.C.M              15  

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

13 - (2 • 3)      7

————————————  =  ——

     15          15

Final result :

  7          

 —— = 0.46667

 15