Answer:
d. 9.3 m/s
Explanation:
Pressure difference = ΔP = P₁ - P₂ = 50 Pa
Density of air = ρ = 1.16 kg/m³
For a Pitot tube
[tex]P_1-P_2=\frac{1}{2}\rho v^2\\\Rightarrow \Delta P=\frac{1}{2}\rho v^2\\\Rightarrow v=\sqrt{\frac{2\times \Delta P}{\rho}}\\\Rightarrow v=\sqrt{\frac{2\times 50}{1.16}}=9.28\approx 9.3\ m/s[/tex]
∴ Flow velocity is 9.3 m/s