A person’s eye has a diameter of 2.5 cm and a converging lens that produces a clear, real image on the retina. When viewing an apple, the eye’s lens has a focal length of 2.4 cm. What is the distance between the apple and the person’s eye?

Respuesta :

Answer:

distance between apple and the eye of the person, u = 60 cm

Given:

image distance, u' = 2.5 cm

focal length, f = 2.4 cm

Solution:

By using lens maker formula:

[tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{u'}[/tex]                                              

where

u = object distance

u' = image distance

f = focal length

Putting the respective values in the lens maker formula:

[tex]\frac{1}{2.4} = \frac{1}{u} + \frac{1}{2.5}[/tex]

[tex]\frac{1}{u} = \frac{1}{2.4} - \frac{1}{2.5}[/tex]

[tex]\frac{1}{u} = \frac{2.5 - 2.4}{2.4\times 2.5}[/tex]

[tex]\frac{1}{u} = 0.01667 [/tex]

u = 60 cm