f(x) = x^3 + 6x^2 + x1/2 and g(x)= x^1/2. Find f(x) ÷ g(x)


A) x^5/2 + 6x^3/2-1
B) (x^5+6x^3 +1)1/2
C) x5/2 +6x^3/2 + 1
D) x^3/2 + 6x+ x1/4
E) x3/2 - 6x + x1/4

Respuesta :

Answer:

[tex]\frac{f(x)}{g(x)}=x^{\frac{5}{2}} +6 x^{\frac{3}{2}} +1}[/tex]

Step-by-step explanation:

[tex]f(x)=x^3+6x^2+\sqrt{x}[/tex]

[tex]g(x)= \sqrt{x}[/tex]

we are asked to determine

[tex]\frac{f(x)}{g(x)} [/tex]

Let us do it step by step.

[tex]f(x)=x^3+6x^2+\sqrt{x}[/tex]

[tex]f(x)=x^2 \times x+6x \times x +\sqrt{x}[/tex]

[tex]f(x)=x^2 \times \sqrt{x} \times \sqrt{x} +6x \times \sqrt{x} \times \sqrt{x} +\sqrt{x}[/tex]

Taking [tex]\sqrt{x}[/tex] as GCF

[tex]f(x)= \sqrt{x}(x^2 \times \sqrt{x} +6x \times \sqrt{x} +1) [/tex]

Hence

[tex]\frac{f(x)}{g(x)}=\frac{\sqrt{x}(x^2 \times \sqrt{x} +6x \times \sqrt{x} +1)}{ \sqrt{x}}[/tex]

[tex]\frac{f(x)}{g(x)}=x^2 \times \sqrt{x} +6x \times \sqrt{x} +1[/tex]

[tex]\sqrt{x}=x^\frac{1}{2}[/tex]

[tex]\frac{f(x)}{g(x)}=x^2 \times x^{\frac{1}{2}} +6 \times x \times x^{\frac{1}{2}} +1[/tex]

Using law of exponents

[tex]a^m \times a^n = a^{m+n}[/tex]

[tex]\frac{f(x)}{g(x)}=x^{2+\frac{1}{2}} +6 \times x^{1+\frac{1}{2}} +1}[/tex]

[tex]\frac{f(x)}{g(x)}=x^{\frac{5}{2}} +6 x^{\frac{3}{2}} +1}[/tex]