A spherically symmetric charged distribution has a charged density given by ρ = a / r, where a is a constant. Find the field within the sphere as a function of r. [

Respuesta :

Answer:

Electric field, [tex]E = \frac{a}{2epsilon}[/tex]

Given:

charge density, [tex]\rho = \frac{a}{r}[/tex]

a = constant

Solution:

Area of sphere = [tex]4\pi r_{2} dr[/tex]

Small charge dq on a sphere of thickness r is:

dq = [tex]\rho \times A\times dr[/tex]

dq = [tex]4\rho \pi r_{2} dr[/tex]             (1)

Integrating both the sides, we get:

[tex]dq = 4\rho \pi r_{2} dr[/tex]

[tex]\int dq = \int \frac{a}{r}\times 4\pi r^{2} dr[/tex]

[tex]q(r)= 2\pi r^{2}a - 0 = 2\pi r^{2}a[/tex]

Therefore, the total charge enclosed by a sphere of radius r is [tex]q(r)= 2\pi r^{2}a[/tex]

Now, by Gauss Law, flux emerging out of the surface is equal to [tex]\frac{1}{\epsilon_{o}}[/tex] times the total charge enclosed:

[tex]A\times E = \frac{q}{\epsilon_{o}}[/tex]

[tex]4\pi r^{2}\times E = \frac{}{\epsilon_{o}}[/tex]

[tex]E = \frac{2\pi r^{2}a}{\epsilon_{o}}[/tex]

[tex]E = \frac{a}{2epsilon}[/tex]

where

E = electric field