The octagon shown below has eight congruent sides. The given measures of the octagon are rounded to the nearest
tenth of a centimeter.
11.6 cm
8.2 cm
28 cm
8.2 cm
- 28 cm
What is the area, to the nearest square centimeter, of the octagon?
A.
392
B. 487
C. 650
D. 720​

The octagon shown below has eight congruent sides The given measures of the octagon are rounded to the nearesttenth of a centimeter116 cm82 cm28 cm82 cm 28 cmWh class=

Respuesta :

Answer:

Option C [tex]650\ cm^2[/tex]

Step-by-step explanation:

we know that

The area of the octagon can be divided in two trapezoids and one rectangle

so

The area of the octagon is equal to the area of the two trapezoids plus the area of rectangle

step 1

Find the area of one trapezoid

The area of one trapezoid is equal to

[tex]A=\frac{1}{2}[b1+b2]H[/tex]

we have

[tex]b1=28\ cm[/tex]

[tex]b2=11.6\ cm[/tex]

[tex]H=8.2\ cm[/tex]

substitute

[tex]A=\frac{1}{2}[28+11.6]8.2[/tex]

[tex]A=162.36\ cm^2[/tex]

step 2

Find the area of rectangle

The area of rectangle is

[tex]A=bh[/tex]

we have

[tex]b=28\ cm[/tex]

[tex]h=11.6\ cm[/tex]

substitute

[tex]A=(28)(11.6)[/tex]

[tex]A=324.8\ cm^2[/tex]

step 3

Find the area of the octagon

[tex]A=(2)162.36+324.8=649.52\ cm^2[/tex]

Round to the nearest square centimeter

[tex]649.52=650\ cm^2[/tex]