Respuesta :

Answer:

[tex]\frac{CL}{AC}=\frac{1}{3}[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

m∠BAC+m∠ABC=90° -----> by complementary angles

m∠BAC=30° ----> given problem

so

m∠ABC=60°

If BL is an angle bisector of m∠ABC

then

m∠ABL=m∠LBC=30°

In the right triangle LBC

[tex]tan(30\°)=CL/BC[/tex]

Solve for BC

[tex]BC=CL/tan(30\°)[/tex] ----> equation A

In the right triangle ABC

[tex]tan(60\°)=AC/BC[/tex]

Solve for BC

[tex]BC=AC/tan(60\°)[/tex] ----> equation B

Equate equation A and equation B

[tex]\frac{CL}{tan(30\°)}=\frac{AC}{tan(60\°)}[/tex]

[tex]\frac{CL}{AC}=\frac{tan(30\°)}{tan(60\°)}[/tex]

Remember that

[tex]tan(30\°)=\frac{\sqrt{3}}{3}[/tex]

[tex]tan(60\°)=\sqrt{3}[/tex]

substitute

[tex]\frac{CL}{AC}=\frac{1}{3}[/tex]

Ver imagen calculista