Respuesta :
Answer:
0.48
Step-by-step explanation:
There are 10 colored balls: 3 red, 4 white, and 3 blue.
You selected 2 balls at random. They may be
RR, WW, BB, RW, RB, WB, WR, BR, BW.
To find the probability of selecting the color of ball that you just selected, find this probability in each of previous cases:
RR: (One red ball left and 8 balls left in total)
[tex]P_{RR}=\dfrac{3}{10}\cdot \dfrac{2}{9}\cdot \dfrac{1}{8}=\dfrac{1}{120}[/tex]
WW: (Two white balls left and 8 balls left in total)
[tex]P_{WW}=\dfrac{4}{10}\cdot \dfrac{3}{9}\cdot \dfrac{2}{8}=\dfrac{1}{30}[/tex]
BB: (One blue ball left and 8 balls left in total)
[tex]P_{BB}=\dfrac{3}{10}\cdot \dfrac{2}{9}\cdot \dfrac{1}{8}=\dfrac{1}{120}[/tex]
RW: (Two red and three white balls left and 8 balls left in total)
[tex]P_{RW}=\dfrac{3}{10}\cdot \dfrac{4}{9}\cdot \dfrac{5}{8}=\dfrac{1}{12}[/tex]
RB: (Two red and two blue balls left and 8 balls left in total)
[tex]P_{RB}=\dfrac{3}{10}\cdot \dfrac{3}{9}\cdot \dfrac{4}{8}=\dfrac{1}{20}[/tex]
WB: (Two blue and three white balls left and 8 balls left in total)
[tex]P_{WB}=\dfrac{4}{10}\cdot \dfrac{3}{9}\cdot \dfrac{5}{8}=\dfrac{1}{12}[/tex]
WR: (Two red and three white balls left and 8 balls left in total)
[tex]P_{WR}=\dfrac{4}{10}\cdot \dfrac{3}{9}\cdot \dfrac{5}{8}=\dfrac{1}{12}[/tex]
BR: (Two red and two blue balls left and 8 balls left in total)
[tex]P_{BR}=\dfrac{3}{10}\cdot \dfrac{3}{9}\cdot \dfrac{4}{8}=\dfrac{1}{20}[/tex]
BW: (Two blue and three white balls left and 8 balls left in total)
[tex]P_{BW}=\dfrac{4}{10}\cdot \dfrac{3}{9}\cdot \dfrac{5}{8}=\dfrac{1}{12}[/tex]
In total, the probability of selecting the color of ball that you just selected is
[tex]\dfrac{1}{120}+\dfrac{1}{30}+\dfrac{1}{120}+2\cdot\dfrac{1}{12}+2\cdot \dfrac{1}{20}+2\cdot \dfrac{1}{12}=\\ \\=\dfrac{1}{120}+\dfrac{4}{120}+\dfrac{1}{120}+\dfrac{20}{120}+\dfrac{12}{120}+\dfrac{20}{120}=\dfrac{58}{120}=\dfrac{29}{60}\approx 0.48[/tex]