Answer:
[tex]x = 2.666...[/tex]
or
[tex]x = - 2.666...[/tex]
Step-by-step explanation:
[tex]1 \frac{18}{7} + 4 {x}^{2} = 32[/tex]
[tex] \frac{25}{7} + 4 {x}^{2} = 32[/tex]
Subtract 25/7 from both sides:
[tex]4 {x}^{2} = 32 - \frac{25}{7} [/tex]
Subtract like terms:
[tex]4 {x}^{2} = \frac{199}{7} [/tex]
Divide both sides by 4:
[tex] {x}^{2} = \frac{199}{28} [/tex]
Hence,
[tex]x = \sqrt{ \frac{199}{28} } [/tex]
or
[tex]x = - \sqrt{ \frac{199}{28} } [/tex]
which is equal to 2.666... or -2.666...