Answer:
- 600 J
Explanation:
A (20, 15, 0 ) m
B (0, 0, 7) m
[tex]\overrightarrow{F_{1}}=8\widehat{i}+29\widehat{j}+32\widehat{k}[/tex]
[tex]\overrightarrow{F_{2}}=48\widehat{i}-59\widehat{j}-22\widehat{k}[/tex]
Net force
[tex]\overrightarrow{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}[/tex]
[tex]\overrightarrow{F}}=\left ( 8+48 \right )\widehat{i}+\left ( 29-59 \right )\widehat{j}+\left ( 32-22 \right )\widehat{k}[/tex]
[tex]\overrightarrow{F}}=56\widehat{i}-30\widehat{j}+10\widehat{k}[/tex]
[tex]\overrightarrow{S}=\overrightarrow{OB}-\overrightarrow{OA}[/tex]
[tex]\overrightarrow{S}=\left ( 0-20 \right )\widehat{i}+\left ( 0-15 \right )\widehat{j}+\left ( 7-0 \right )\widehat{k}[/tex]
[tex]\overrightarrow{S}=-20\widehat{i}-15\widehat{j}+7\widehat{k}[/tex]
Work done is defined as
[tex]W = \overrightarrow{F}.\overrightarrow{S}[/tex]
[tex]W = \left ( 56\widehat{i}-30\widehat{j}+10\widehat{k} \right ).\left (-20\widehat{i}-15\widehat{j}+7\widehat{k} Â \right )[/tex]
W = -1120 + 450 + 70
W = - 600 J